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CORRIGENDA

Y ue-Sheng Wang and Duo Wang, Scattering of elastic waves by a rigid cylindrical inclusion
partially debonded from its surrounding matrix—1I. SH case. Int. J. Solids Structures, Vol.
33, No. 19, pp. 2789-2815, 1996.

Yue-Sheng Wang and Duo Wang, Scattering of elastic waves by a rigid cylindrical inclusion
partially debonded from its surrounding matrix—1II. P and SV cases. Int. J. Solids Struc-
tures, Vol. 33, No. 19, pp. 2816-2840, 1996.

In Part I of the above referenced series paper, eqn (56) is incorrect when n > 1. It
follows from the book by Muskhelishvili (1953) that the general solution of eqn (55) should
be
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where X(0) is given by eqn (57) and P,_,( ) is a polynomial of order n—1 in terms of
tan(6/2). The unknown coefficients of P,_,( ) may be determined by the single-valued
condition (31). For the case of n = 1, P,_,( ) is a constant P,. Using eqn (31), one may
have P, = 0, and then arrive at eqn (56). That is to say, eqn (56) is correct only whenn = 1.
Since only the case of one debond was considered in detail in that paper, no errors are
included in other equations.

It is also noted that, in Part II, the footnote indicating the change of author’s address
should be marked on the first author, Yue-Sheng Wang.
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The purpose of this corrigendum is to correct some statements concerning the invari-
ance requirements for constrained theories that we assumed in our paper. These corrections
do not apply when dealing with an unconstrained theory. In our paper, it was assumed that
n, m* and k* were objective [cf. eqn (12)]. This leads to the conclusions that the indeterminate
functions p, are invariant under superposed rigid body motions, and that y, F, M and L*
are objective [cf. eqns (13) and (14)].

As usual, it is assumed that the forces m, m* and k* can be additively decomposed :

n=n+i, kK =Kk+K, m =m+m? (C.1)

where the overbar and the hat denote the constraint and determinate responses, respectively.
Then, following Casey and Carroll (1996), and O’Reilly and Turcotte (1996), the correct
invariance requirements are to assume that only f, k* and * are objective:
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i*=Qh, (k)" =Qk* @m)" =Qm" (C.2)

For constrained theories, (C.2) does not imply eqns (13) and (14). In addition, the properly

invariant theory needs to be modified in a manner that is easily inferred from Section 4 of

O’Reilly and Turcotte (1996). However, for an unconstrained theory, (C.2) is identical to

eqn (12), and eqn (14) also holds. Finally, as an unconstrained theory was used in the

examples discussed in our paper, the corrections reported here have no effect on them.
Also, eqn (9) should read
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A reference to L. N. Ter-Mkrtich’ian, Some problems in the theory of elasticity of
nonhomogeneous elastic media. PMM, Vol. 25, pp. 1120-1125, 1961, which is from the
Russian Literature, was inadvertently left out from the above two-part paper published
recently in this journal. This was brought to our attention by Prof. Bertil Storakers of the
Royal Institute of Technology, Stockholm, Sweden, to whom we are grateful. In this paper
by Ter-Mkrtich’ian, mathematical formulations for the axisymmetric indentation of an
elastic half-space with exponential variations in Young’s modulus normal to the indented
surface were treated, by recourse to Love’s displacement potential and Sneddon’s Hankel
transform (see our two-part paper for appropriate references for these methods). The
theoretical results for the exponential model reported in the initial steps of the derivation
in Part I of our two-part paper match the earlier results of Ter-Mkrtich’ian. Full solutions
for the particular case of a point force and, the surface vertical displacement, w(r), were
not presented by Ter-Mkrtich’ian; these can be found in Part I. The stresses were also
formulated in Ter-Mkrtich’ian (1961) in a manner which was not amenable for direct
quantification. Equation (2.16) of Ter-Mkrtich’ian (1961) apparently contains an error;
the correct form is presented in eqn (41) of Part 1.

We have reported, in our aforementioned two-part paper, explicit analytical solutions
for the force-indenter penetration and force-contact radius relations, as well as for the stress
fields for the point force and axisymmetric indenters, in such a way that the predictions can
be compared directly with experimental observations. In addition, new models for power-
law spatial variation in Young’s modulus and complete finite-element analyses for both the
exponential and power-law models were presented in our two-part paper.



